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Spin Glasses with Long-Range Interaction 
at High Temperatures 
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We study the Ising and N-vector spin glasses with exchange couplings 
J=-(Jij;i, JeZd), which are independent random variables with EJ~j=O and 
EJ~<~ynn! [ i - j l  -n=d, for nGN, some finite constant 7>0 ,  and ~>�89 For suf- 
ficiently small /~, we show that for E-a.a. J there is a weakly unique, extremal, 
infinite-volume Gibbs measure #1~,J for which the expectation of a single (com- 
ponent of) spin vanishes and which has the cluster property in L2(E ) with the 
same decay as interaction. This work is based on results and methods of 
Fr6hlich and Zegarlifiski. 

KEY WORDS:  Spin glasses; long-range interaction; high-temperature 
region; upper expansion method. 

In this note we describe some recent results on spin glasses with arbitrary 
(admissible) long-range interactions on the lattice F = - Z  a. These results 
have been obtained in Refs. 1 and 2 or are proven with the use of the 
general methods developed there. First we present a model considered by 
us and extend a result from Ref. 3 about the existence of the thermo- 
dynamic limit for pressure. (A simple proof is given in Appendix A.) Then 
we discuss the Gibbs structure for the theory of spin glasses with long- 
range interactions. In particular we consider the problem of constructing 
the family of local specifications, the relation between strong and weak uni- 
queness, and the problem of verifying whether an infinite-volume measure 
satisfies a corresponding DLR equation. 

The first main result--existence, weak uniqueness, and extremality of 
Gibbs measures in the high temperature reqion--is presented in 
Proposition 1. To give an idea of our upper expansion method we 
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sketch--following Refs. 1 and 2--the proofs of weak uniqueness and 
existence of the infinite-volume measures. Additionally, we give here a 
general (independent of temperature) method of verifying if the infinite- 
volume measures satisfy the DLR equation, i.e., if they are Gibbs measures. 
Using an expansion analogous to one in Ref. 2, we prove also the 
extremality of our Gibbs measures at high temperatures. 

Then we present results concerning the clustering; see Corollary 1 and 
Proposition 2. 

Finally we show (see Appendix C) that our upper expansion method 
can be applied also to nonrandom systems. 

The system we consider is defined by.a Hamiltonian function 

H(cr, J) : =  -- ~ J~gai .aj (1) 
i , j~F, i# , j  

a- - (a i~SNu{O }, ieF); for N = I  we assume SN--={--1,+I}.  The 
couplings J =_ (Jij ~ ~, i, j ~ F) are independent random variables subjected 
to the following conditions, for any i, j ~ F: 

(Ci) The mean-zero condition 

EJ~= 0 

(Cii) The factorial growth condition 

IEJ~t ~ 7"n! li-- jl n~d, 

where E is 

A finite-volume pressure for H is defined by 

pA(J) :=  in #oe-~ u~ 
IZll 

h e n  

an expectation value, e > �89 and y is a positive constant. 

(2) 

with a product probability measure /~0 on a configuration space of spins 
F2=((SNu{O})r ,z)  with the a-algebra generated by the product 
topology, 

H A = H ( a i - O , i ~ A  C) and f l > 0  

Assuming (C) and translation invariance of E, then the existence and 
independence of J, E-a.e., of the infinite-volume pressure 

p : =  lira pA(J) (3) 
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have been proven (3'4) ( ~ 0 - { A n e F } n ~  ~ is an increasing Fisher sequence 
of bounded sets invading F). In fact, for this a weaker condition is 
sufficient with n ~< 4 in (Cii) (see Appendix A) 

Let us now define the finite-volume measures. For  any 6 ~ s and any 
i e F  

Ju < C <  o% E-a.e. (4) 
J 

Hence, the finite-volume measures 

- -  (~ # O A ( e - - ~ m ' )  A 6 Y  ( 5 )  
 A,J = : =  ' 

(where 3e is the point measure, #0A is the restriction of #o to the spins in A, 
all bounded sets in F) are well defined E-a.e. on any countable union 

of sets of the form 

f2a :=  ~) {a:cri=ffs, i~A C} (6) 
A c J  

Moreover, for any J from a set of E-measure ! a family 
o~j- {#3,j: cr E t2, A ~ ~ } forms a local specification. Unfortunately, this 
specification is too poor for us. For  example, if N =  1 (an Ising spin glass), 
then f~ is a countable set. But the existence of the thermodynamic limit for 
the pressure suggests that the infinite-volume measure for H 

# j  - lim #A.S -- l i m / ~ j o  (7) 
�9 ~/0 go 

exists and should be continuous, so s would be of measure zero for #s. 
We can of course define an extended specification gj by enlarging the 

domain of ~j to the set 

{ < )2}  
Q j : =  a e f 2 : V i e F ,  ~Ju~rj <oo (8) 

\ j  / 

If ~ >  1 in (Cii), then s s but for �89 1 we shall verify whether f2s 
contains a set of measure 1 for some continuous probability measure #. 

It is shown in Appendix B that for all J from a set of E-measure 1 and 
for any probability measure/~ such that 

Ju/~aj < ~ (ga) 

Vi, j ~ F ( i # j )  I#(~r,c~j)l<~Cli-jl  -~d, ~ > 2 ( 1 - ~ )  (9b) 
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we have 

/~faj = 1 (10) 

[-Obviously the set of continuous probability measures satisfying (9a), (9b) 
is nonempty.]  Note that (9) implies (10) for a fixed set of E measure 1. 
[-Given a probability measure v on (*2, Z') one can always find a set ,D~ of 
E-measure 1 such that for any J E e r ,  (~-~.jJ/jo~/)2< o0, v-a.e.] As we will 
explain in Proposition 2 (see also Refs. 1 and 2), one may expect that the 
infinite-volume measure for H has at most the cluster property with the 
same decay as interaction. From this, using (9b), we get 

a = c ~ = ~ >  2 

We expect that this fact will have some important consequences. 
Given a local specification gj= {#~ , j ;~e f2 j ,  A e g }  we define a 

Gibbs measure/~j for this specification by the DLR equation 

bzj(#~,j(F) ) = #j(F) 

[-for any bounded measurable function F on (/2, X)]. The set of all Gibbs 
measures for gj is denoted by ~(d~ and the set of its extremal points (pure 
Gibbs states) by 8ff(gj). 

Suppose that for any J from a set J, E ( ~ ) =  1, the set ~(gj)  is non- 
empty. [-Then also the set of its extremal points ~?(r is nonempty; see 
Ref. 12.] We say that the measures / t j e  ~(gj)  are weakly unique if for any 
probability measure v on (s Z') 

lim # e  _ ( 1 1  ) A,J - #J, v-a.e. 

on a set ~v of E-measure one. 
It was argued in Ref. 10 that this notion of uniqueness is sufficient for 

physics, since the boundary conditions ~7 should be considered as part of 
the experimental setup and so are independent of J. We say that the 
measures # j  e N(gs) are (strongly) unique if 

# ~ ( g j ) =  1 (12) 

for any J E ,~, E(,~ ) = 1. 
One may ask what the relation is between these two notions of 

uniqueness on the set ,~v c~ ,~. 
By definition of specifications gj we have that there is a set Qv c ~ of 

v-measure 1 such that 

VJ~,D v c~,D, g2~ c/-2j (13) 
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In general, however, we can have 

/~j(f2v) = 0 (14) 

so weak uniqueness does not necessarily imply extremality of #j. On the 
other hand, the strongly unique Gibbs measure is of course weakly unique 
and necessarily extremal. (We expect that for ~ < e the weak uniqueness 
at high temperatures implies the strong one.) For ~>  1 the existence 
and weak uniqueness problems for spin glasses (as well as the clustering 
properties of Gibbs measures) have been studied in Refs. 5-11 (see also 
the references cited therein). At high temperatures one also has strong 
uniqueness for this case of c~ values. 

The general case c~ > �89 in the high-temperature region has been solved 
in Refs. 1 and 2. The following proposition is essentially contained there. 
(Additionally, we verify here that the infinite-volume measures satisfy the 
corresponding DLR equations and are extremal Gibbs measures.) 

P r o p o s i t i o n  1. If E satisfies condition (C) with :~ > �89 then for all 
0 < fl < tip with tip > 0 sufficiently small, the limits 

# j =  tim #A.J (15) 
~0 

exist and are weakly unique, extremal Gibbs measures for gj (respectively), 
E-a.e. 

TO give an idea of the proof, let as consider an Ising spin glass and 
assume that/~o and E are symmetric (for the general case see Ref. 2). We 
start from the weak uniqueness problem. Let v be a probability measure on 
(& r ) .  

It is sufficient to show that 

lim EV(#~AaA }tA(TA) 2 = 0 (16) 
~0 

for any A 6 i f ,  where aA--l~i+A ai and we have omitted the integration 
variables J in the notation of finite-volume measures. For notational 
simplicity we will take v =3e ,  since in the general case the proof goes 
analogously. 

A spin ai, i~A, feels the external conditions ~ f 2 :  

1. Directly, through the interaction by the couplings {Ju, J 6 AC} - 

2. Indirectly, through the interaction with other spins at, l~ A, which 
interact with the external configuration 6 ~ f2. 
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To begin, we separate and estimate the influence on expectation of the 
function 

I A ~ (#~AaA --12A 0-A) 2 (17) 

due to the direct interaction of oi, i~ A, with spins outside A. 
By Taylor expansion with remainder of I A with respect to some 

coupling Jij, J e A", we get 

EIA = EIa/si/ o + flEJij ~ ( / I A / s i j  - 0 

+ fl~E ds~j SJ dsijJijOijlA/s~ (18) 

where we defined interpolating Ia/so as in (17) but with soJo., s~je [0, 1], 
instead of Jo, and Og=d/dfiJ~j o. From the mean-zero condition (Ci) the 
second term on the rhs of (18) vanishes. 

Next we expand EIA/~u_ o with respect to another Jij,, j ' eA" .  
Successive application of this procedure gives us 

EIA = EIA(K~A~) + ~2 y~ E ds,j 4s~j ~ 2 ' Jo. OjA(~ j )  (19) 
j eA  c 

where we denoted the following conditions: 

KiA,'= {sr  Vj6A"}  
(2o) 

~O.=-{si,, l< j ;  s'ij} 

for a lexicographic order < in F. 
Since (by our assumption about the values of single spin) 

laZlA(%)l ~< 20 (21) 

SO using condition (Cii), we get 

EI A ~ EIa(KiA,. ) + 20/~27 ~ ~ ] i -  j] 2 ~ d  (22) 
j~A c 

If ~>�89 the series on the rhs of (22) converges and is of order 
d(i, OA) - ~  ~)~. 

Now we need to estimate the first term from the rhs of (22), in which 
the spin o~ depends on external conditions only indirectly. Expanding 
successively the integrand IA(K~A,) into Taylor series with remainder with 
respect to Jik,  k ~ A \ { i } ,  we get 

~ fo k E I A ( K i A r  2 E l i - k l  2=aE ds,k ds'~J~k 
k~A\{i} ~o 

• a~k IA (Cg, k) (23) 

where cgik- {s~k =0, l ~ A  c or l<k ;  s~k} 
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The first term on the rhs of (23) vanishes if/~o is symmetric (otherwise 
it depends only on expectations of aA\, and can be treated analogously 
starting now from some i'~ A\i). The key role in our estimations is played 
by the following inequality: 

IO~klAI <~ C(IA + IA ~ {,,kI + I{,.k}) (24) 

with a constant C > 0 independent of any parameter of our model. This is a 
purely algebraic inequality. 

Using (22) (24), we get the bound 

EI A <-G 2Ofl272 ~ [ i -  jl 2=d 
i ~ A c 

+ C~ 2 ~ E ds,k 
kcA  

f 2 
dSikJ ikElA q- IA ~ {ik} q- l { i k } ]  I%k  (25) 

Since each term of the form Ie/%k in the integrals in the second series on the 
rhs of (25) has the same structure as the starting one I,~, we can apply 
to them the same procedure (19) (25) starting from the point k e A ,  
respectively. 

By iteration of the above steps we generate our upper expansion. The 
control over our upper expansion gives us the following facts: 

1. In each step we get a small factor fi2. 

2. The number of terms grows only exponentially, since each factor 
IB produces a constant number of terms of the same structure. 

3. Due to condition (C), we get summable factors ] i -k]  2=d. 

4. If we expand in the direction of internal line Jk~,, k, k' ~ A, which 
was interpolated in the preceding step, we get multiple integrals 
with respect to sk~,. The 2n of such multiple integrals produces the 
factor [(2n)!]  -~, which cancels the corresponding (2n)! factor 
coming from Ej2~, [-by our (cgii)]. 

See Refs. 1 and 2 for details. 
In general, if E is nonsymmetric, we always expand the first time with 

respect to a Jik" as above, but the next time (in the same direction) we 
expand only to the first order and use, analogously to (24), the inequality 

13iklA] ~ C'(IA + I A ~ {ik} ']- I{ik)) (26) 

with a numerical constant C'> O. 
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By resummation of our upper expansion, if 0 < fl < flo, for /30 > 0 
sufficiently small, we get the bound 

E(~aA(TA--I~A ff A ) 2 ~ C  ~ Z I i - J 1 - 2 = d  
i~A j6A c 

<<. C rA] d(A, OA) -~2~ 1)a (27) 

with a constant C > 0  independent of A. This ends the proof of weak 
uniqueness. 

To prove the existence o f  infinite-volume measures, we consider the 
q u a n t i t i e s  E(#A=~7 A -- ~AI ffA)2 with A ~ ~ ,  A 1 c A2, A~, A 2 e ~0. 

Proceeding analogously as in the proof of weak uniqueness, first we 
estimate the influence of spins in A2\A~ on the spins in A due to the direct 
interaction through the couplings Jo, i ~ A, j ~ A=\A~. Then we consider the 
indirect dependence due to interaction with other spins in A1 that are 
connected with external (to A1) spins. 

The resummation of the upper expansion gives the following bound: 

E(flA2 0"A -- ~a l  0"A )2 ~ C I AI d(A, OA ~ ) - ~=~ - ~)d (28) 

with C >  0 independent of A1, A2, if 0 </3 < flo for sufficiently small/3o > 0. 
The estimation (28) implies the existence of limits 

#s = lim #A,J (29) 
g0 

for some subsequence Yo of bounded sets and E-a.a.J .  Now we want to 
verify that #j  are Gibbs measures for  gj. First we note that for any i �9 F, 

Efl j  Jijaj < ~ (30) 

j ~ i  

which easily follows with the use of (Cii) from 

I EJox Jijzl~ J aj~ a j2 r 

<~ 20/32Ej}~J}2; 

ds ij 2 E J  (jI2 J022 O ijl O U2 ( # J ~ jI (T J2 ) 2 

J, •J2 (31) 

[Here Taylor expansion with remainder and (Ci) have been used.] 
5 From (30) we see that the m e a s u r e s  {~Aj}A~,~w are well defined/~s-a.e. (for 

E-a.a. J). 



Spin Glasses with Long-Range Interaction 919 

We now show 

]~j#A,j~TA = #jaA, VA �9 ~ (32) 

i.e., IxjeN(gj).  
From (30) for any e > 0  there is A1 e~o ,  A cA ~ ,  such that 

Ep(#~ aA - #~A'aA)2 < e (33) 

where r {(~A~)~ = #~ if i e A, and 0 otherwise }, and we have omitted the 
indices J. 

By definition of /~j ,  it is enough to show that for sufficiently large 
Aae.fio, A l C A 2 ,  one has 

E(# A2YA AI a x -- # A2a A )2 ~. ~ (34) 

Since [with #(s) - S# A~ + (1 -- S) a A~ ] 

E(I~A2]J#AAIG A _ _  j2A2G A )2 

E~A~(~2,a~ - ~ ) 2  

= E~A~(f~ dSZs 

= EI~A2 ds#~A ~') aA, 2 2 aiJafJ 
i c A  j c A 2 \ A I  

<~ C2'al Z E#A2 Z JueJ 
i ~ A " j  6 A2\AI  

<~ C'2 IAI ]AJ d(A, OA,) (2~ ,)d (35) 

by the same arguments as in the proof of (30), so we get (34). This ends the 
proof of (32). Note that we used here the fact that {[s converges 
and the limit/~j is twice (jointly) differentiable with respect to the couplings 
Jo (i, j e  F), but the assumption 0 < fl < rio with rio > 0 sufficiently small is 
not used. 

Extremality. In order to show that # jec~f(gj ) ,  E-a.e., it is sufficient 
to prove that 

lim E#(/x~ aA - #A 0"A) 2 = 0 (36) 
~0 

for any A e f t .  For  this we use a slightly more complicated, but analogous 
as in the proof of weak uniqueness, upper expansion. The complications 
come from the fact that now/x is J-dependent. 



920 Zegarlifiski 

Let i~ A. By successive Taylor expansion with remainder with respect 
to Jo, J ~ A~, we get 

E#(#~ aA --#AaA) 2 

=- E#IA = E#[IA(K,A,')] 

+fl ~ E[Ju#(OJA(K~j))] 
j~A c 

[ ; :  ] + fi2 S E j2# ds,j ds o. a}IA(%) (37) 
j~A c 

where 
not vanish, since # depends on J. We have from (Ci) 

IflEJ~j#[ t~ JA(  K~j) ] I 

fl2EJ~ fo = dsij(Oij#)/s o [OiylA(Kg)] 

<~ 32f12EJ 2 

K ~ - { s i t = O ,  l<j},c~ij - {sit, l<j;s~}. Now the second sum does 

(38) 

Hence both series on the rhs of (37) are bounded by 

C1 ~ [ i - j l  2~d~o(d(A, OA) -(2~ lld), with C 1 > 0  
j~A c 

independent of A. 
To estimate the first term on the rhs of (37), we make the expansion 

step with respect to the couplings in A. We have 

with 

E#IA(KiA,) = E#IA(Kir ) + fl ~ EJ,k#(O~kIA(K~k)) 
kEA 
k r  

"JV f12 2 EJ~ ds,k dSik # (~2k l  A(C~ik) ) 
k~A 

(39) 

Kik-  KiAcw {sit=0, l < k } 

% -  K,Acu {s,,= 0, l<k,s;~} 

The first term on the rhs of (39) vanishes if #o is symmetric. (Otherwise it 
depends on expectations of aa \ ,  and should be expanded further. Then we 
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have some induction in volume of A.) To estimate the first series from the 
rhs of (39) we note that 

I flEJik fl (~ ik IA ( Kik ) )l 

f 
[1 dsik ~/Sik Ic~I.(K,~)l (40) 2fi2 EJ~k 
~0 

Then, using the inequalities (24) and (26), we get the estimate 

E~I~(I':~A~)<~ ~ c  X EJ~,~ ds~,/,,#~(K~) 
k~A 
k~i  

+ IA ~ i~,~l(K~k) + I~,k~(K~k)) 

+ dsik ds;~ ~ IA(%.~) 

+ IA u ~ik/(~fik) + Ili,k t(~ik))] (41) 

Hence we get our main inequality, 

EI2IA <~ CI ~ ]i--jl-2~d +rhs of(41) (42) 
j~A 

Since the second term contains factors of the form IB of the same structure 
as the starting o n e  IA, we can apply to them the same procedure (starting 
from the point k, respectively). In this manner, we generate an adequate 
upper expansion. The principle of control of this expansion is the same as 
in the case of the proof of weak uniqueness. However, now we require rio to 
be smaller because in each step we generate twice as many terms. After 
resummation of our upper expansion we get the bound 

EI~(I~AaA--IZAaA)2<~C ]AI d(A, c3A) ~2~ 1)d (43) 

which ends the proof of extremality. 

Remarks. Note that in the case of the Ising spin glass, since cr~ = 1, 
we can make several simplifications in the organization of the full upper 
expansion; see Refs. 1 and 2. 

Let us stress that in our proofs we have not used the translation 
invariance of E, but only the condition (C). 
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As a simple consequence of Proposition 1, we have the following 
result: 

Corollary 1. For  any A e o~ and any bounded measurable function 
F on (s S )  we have 

ProoL 
we have 

E(~t(a A, F))2<~ C HFI[ 2 ]AI d(A, F) -(2~ 1)a (44) 

Let A e ~-, A c A, be the largest set such that FE~Ac. Then 

E(#(a A, F)) 2= E(I2((12~a A -]ZAaA) , F)) 2 

~<4 IIFII 2 El~(/z~a.--/ZAa.) 2 (45) 

Hence, using Proposition 1, we get (44). 
In Refs. 1 and 2 we have proven (for Ising and N-vector spin glasses) a 

more precise result for clustering, namely: 

P r o p o s i t i o n  2 (Clustering). Let E satisfy (C) with ct>�89 and 
0 </~ </~0 with /~o > 0 sufficiently small. Then for any bounded set A c F 
and any bounded function F e  Z'B, B - supp F c / ~ A ,  

E(#(aA, F))2<~C IIFII % ~2 l i - j l  2~a (46) 
i~A  
j ~ B  

with a constant C > 0  independent of B and any monomial o- A in spin 
components a m(~), i E A. 

Skotch of the Proof. In order to give an idea of the proof, let us 
observe that there is a hierarchy of correlations between spins in the sets A 
and B. First, there is the direct interaction between spins in both regions. If 
we remove this direct interaction, the spins in A and B are still correlated, 
since they interact directly with other spins aki, kl r A u B. After removing 
the direct interaction of a spin (rk,, k I r A w B, with those in B, the spins in 
A and B still can be correlated. This holds if there are other spins 
ak2 r A w B u {k 1 } that interact directly with ak~ and spins from B. And so 
o n  . . . .  

For simplicity of notation let us consider only an Ising spin glass with 
#0 and E symmetric; for the general case see Ref. 2. 

Let us take ie  A. We first estimate the correlations of at with spins in 
B due to direct interactions. By successive Taylor expansion with remain- 
der we have 

EIAm = EIA,B(Km)+ f12 • EJ~. f~ dsij f~u ds~.~2ZAm(C~ij ) (47) 
j e B  
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where 

I A, B =-- # ( a  A, F) 2 

K m  = - {s~= 0, V j e B }  

~0- ---= {si,= 0, l < j ; s ' i j }  

The second term on the rhs of (47) is estimated by 

a lIFll 2oo ~ l i - j l  :=d 
j E B  

[from (Cii)]. 
To analyze the second-order correlations (for ai), we expand 

successively the first term on the rhs of (47): 

EI  A,8(Km) = E I  n\ {i)m(K,r)(#oa,)2 

+ f12 ~ Ej~k dS,k dS',k a~klA,B(Cff,~) (48) 
k~r~Bu {i} 

The first term on the rhs of the above equality vanishes if/~0 is symmetric 
(otherwise it should be expanded further analogously). To continue our 
upper expansion, we use the following (algebraic) inequality: 

IC~2~kl A,B] <~ C ( I  A,B + I a ,~ {i, k},B Jr- I{i,g},B) (49) 

with a numerical constant C > 0. 
From (47)-(49) we get the inequality 

j ~ B  

+ c ~  ~ E 

+ I{i,k}.B)(%k) 

EJik  dSik dS~k (IA,B + IAU{,,k},B 

(50) 

which can be used for the generation of the upper expansion in the 
considered case. The control over this expansion is based on analogous 
facts as previously. The resummation of our upper expansion gives (46). 
Note also that if flo > 0, is sufficiently small, we can use (49) to generate a 
series that gives the estimation of the decay of correlations from below (see 
Ref. 2). 

The above-described upper expansion method also can be applied to 
the investigation of nonrandom systems. Then in general we make the 
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Taylor expansion of (/~CrA--#AaA) 2 or /~(aA, aB) 2 with respect to the 
couplings J~j only to the first order. In particular this gives for Jo.~ 
l i - j l  =d Cr > 1, the decay of correlations/t(trA, a ~ ) ~  d(A, B) -~d/2 (for any 
bounded sets A, B c F). 

However, in some special cases, when additional information is 
available (e.g., due to correlation inequalities), we can apply our upper 
expansion directly to /~(aA, ORB)- Then we get the decay of correlations 
exactly as the decay of interaction. Actually we know how to get this 
result by our method in the general case of nonrandom spin system (with a 
bounded single spin space). 

As an example we give in Appendix C a simple proof of this fact for 
ferromagnets at high temperatures. 

A P P E N D I X  A 

It is sufficient to consider as a free measure #o a symmetric product 
probability measure on (C2, Z'). Let us take E to be symmetric (for the 
general case one can use an analogous method). 

Proposit ion A.1. If 

EJ~j=O, Vi, j ~ F  (A.la) 

IEJ~j l <~ Tmm[ l i -  jl -m=d (A. lb) 

then 

for m~<4, cr189 

lira PAn = P - lim EpA~ ; E -  a.e. (A.2) 

We need the following lemma: 

Lemma A.1. If (A.la) and (A.lb) hold with m ~ 2n for n e N, then 

E(pA(J))" < C, 

with C, > 0 independent of A. 

Proof. From our assumptions about /% we have for any J 

PA(J) >>- 0 (A.3) 

Let us first consider the case n = 1. By successive Taylor expansion with 
remainder, using the mean-zero condition, we get 

EpA(J) = 2 fl 2E J~ dsu ds 0.3}pA(J)/~ (1.4) 
( i , j )  c A 

where 
% =  {sk,= 0, (kl)< (i, j); s~} 

(with a lexicographic order < in the space of bonds). 
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Since 

I~2.pA(J)I : IAI ~1 ~(~,.o-j, ~,.Gj)142 IAI 1 

so by our condition (A.lb) with m ~< 2 we get 

(A.5) 

EpA(J) <~ 2flZy 2 ~ ]i--jl-2:a< ~ (A.6) 

j ~ i  

For general n~ N we make the expansion as in (A.4) and then use the 
bound 

la~p~l = In(n- 1) p~ 2(00pa)2 +np~A 1 a~pml 

~ < n ( n - 1 ) ] A [ - 2 p ~  2 + 2 n t A l - ~ p ~  
(A.7) 

to get 

Ep~A<~fl 2 ~ E{J~ ds~j dso[n(n-1)]A[ -2pAn-2 
( i , j )~  A 

+ 2 n ] A  i , 1 I P A  ] / ~ 0  ) (A.8) 

By n applications of this procedure we get the bound 

1 gp~A~fl2n2nn! ]AI n ~ . . - ~  (2nD! 
( i l ,J l)  ~< --- ~< (in,in) c A 1 

• 1) (A.9) 

where {nl ..... n,,} are the numbers of couplings with the same indices and 
the factor [[I~=1 (2n~)!] ~ comes from multiple integrals. From (A.9) we 
get 

Epna<~22n+lf12n72nn! l i - - j ]  2ocd - ] - o ( [ A ]  1) ( A . I O )  

j 4 - i  

This ends the proof of lemma. 

Let 

An :=  {]iq<~2n;l=l,...,d} for n e N  

Let 

gn := P ( A n ) - 2  -d ~ P(AI~ 1) 
l =  1,...,2 d 

(A.11) 

822/47/'5-6-21 
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where p(A) =- PA, and the union of disjoint cubes AZn_ 1 (l = 1,..., 2 d) of side 
2 " -  ~ is equal to An. 

By Jensen's inequality we see that gn ~> 0. 

Lernma A.2.  If (A.la) and (A.lb) hold with m ~ 2 ,  then 

Eg n << c2-n(2~ 1)a, Vn E IN (A.12) 

with C > 0 independent of n. 

Proof. Applying the successive Taylor expansion with remainder 
with respect to the couplings Jq, i6Atn ~,jr with l#k ,  we get 

z , ) dS~ ~o ds,j~.gn/% (A.13) 

l r k;1,k = 1,. . . ,2 d 

Since 

rO2gnl ~<2 IAn[ -1 (A.14) 

so we have 

Eg,<~2~z7 zlAnl-l ~ [i-jl  2~, (A.15) 
(...) 

where the summation goes over all (i, j)  as in (A.13). The sum on the rhs of 
(A.15) is of order C.2a(diamA,_x) 2(1 ~)d with l>~c~>�89 and so from 
(A.15) the lemma follows. 

From Lemma A.2 it easily follows that 

p =  lim EpA ~ (A.16) 
n ~ c o  

exists. Since now 

E IpA~--Epz~l <~2Eg,+E 

and by iteration 

E t P A n  - -  EpAnl <~ 2 

2 d ~ p(A~_~) 
l =  1 , . . . ,2 d 

--E2 -a  ~ p(Atn_x) (A.17) 
l =  1,. . . ,2 d 

k(n) 

~, Egn k+ElSk(,)--ESk(n)l (A.18) 
k = 0  
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with 

Sk(n) 2-k(")d ~ t =-- p(A,,_k(n) ) (A.19) 
l = 1,...,2 k(nld 

so, taking k(n) --+ oe as n --, oe and using (A.12), Lemma A.1, and the law 
of large numbers, we see that 

lim E IPAn - -  E p A A  = 0 ( A . 2 0 )  n~oo 
This, together with (A.16), ends the proof of Proposition A.1 for the 
sequence ~o = {An }n~ U" The generalization to any Fisher sequence can be 
done as in Ref. 3. 

Romark. Note that under the conditions (A.la), (A.lb) one can 
prove the existence of (random) infinite-volume pressure (independent of 
boundary conditions, but it may be dependent on a sequence ~o) without 
the assumption about the translational invariance of E. 

APPENDIX  B 

L e m m a  B.1. If E satisfies (C) with c~>�89 then for any set ,~ of 
E-measure 1 and any probability measure # on (f2, Z') such that for any 
i, k E F  

( E  )2  VJ ff ,~ dij#a; < oo (B. 1 ) 
\ j ~ F  / 

I # ( a , , a D l < ~ C E l + ] i - k l ]  -ad, 2 ( 1 - a ) < c 7  (B.2) 

we have 

VJff J 

Remark.  In particular, if #%=cons t ,  
E-measure 1. 

(E )2 Y~jaj < 0% /~-a.e. (B.3) 
\ j e F  / 

(B.1) holds on a set of 

ProoL Let 3 be a set of such couplings J that for any ie  F and any 
�89 > 6 > 0 there is a constant Ca - Ca(i, J) > 0 with the property 

and 

V j ~ F  I J i / < C a l i - j l  ~, a)d (B.4) 

J/j < oo (B.5) 
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Then from (C) we have 

E ( S )  = 1 

Let Sf(i, r ) =  {j: l i - j l  <r};  then (z )2 
# J~ffyj = 2 JijJo"It(ffJ , ffJ') 

j ~  OU(i r) j , j '  E 3ff (i,r) 

From (B.4) and (B.2) we have 

Since 

if 

(z )2 
+ J~jl.trrj 

j~of"(ir) 

JoJij'#(rrj, ay) 
Y I c ~U(z r) �9 ,. -, ", 

< c a  Z l i - j l  (~ a>dli--j'l (= a>d(l+l j - - j ' l ) -~a 
j,j'~F 

y, 
j '  g: i , j  

l i - j ' l  ~ a )d ( l+ l j - - j ' l )  ~d 

(B.6) 

(B.7) 

(B.8) 

= Y. ( . . . )+  Z (.. .) 
[ t. J'] > [J--J'l  [i ,i'[ ~ IJ J'[ 

t _ . j ' # j  j ' • i  

<~ C2 ] i - j]  ~d (B.9) 

(c~+ ~ - 6 - ~ ) >  1 

then the rhs of (B.8) can be estimated by 

C3 2 ]i--j] (~+~ a)d 
j r  

which is finite if 

From(B.10a), (B.10b) we get 

( c ~ + e - 6 ) >  1 

~>2(1 --c 0 

(since 6 > 0 can be taken arbitrarily small). 

(B.10a) 

(B.lOb) 

(B.11)  
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A P P E N D I X  C 

We have 

H =  - ~ J~a;aj (C.1) 
i r  

with a ; =  _+1, i e F - Z  d, and 

J ~ = [ i - j ]  ~d, c~>l 

for alt i, j e F, i # j. We define 

#A(')  "= (~ -o  #~ 
~g.)  

= #oA(e ~')  

with a symmetric free measure #0. 

P r o p o s i t i o n  C . 1 .  

Proof. 

(C.2) 

(c.3) 

If 0 < fl < rio for a sufficiently small flo > 0, then 

#(aea~) = o ( l i -  Jl - =d) (C.4) 

We have 

#A(Tii(Tjr____#A(Ti(Tj/Kij~_ fl l i _ j  I ~d dsii~(i(#Aqi@)/~,u (c.5) 

The second term is of the form of a bounded, nonnegative function times 
l i - j l  ~d. Hence, we need only to consider the first term. (This term is non- 
negative, from GKS, so we have automatically the bound from below.) 

We have 

#Aaia~/K,j = ~ fi [i--k] -~d dSik (?;k(#airrj)/% ~ (C.6) 
kEd 
k # i , j  

where ~ = {s, = 0, l <  k; s;k}. (We take j  as the first element with respect to 
a partial order <.)  

Since from the GKS inequalities 

~ik#A ai(Tj = #A a k a j  - -  ~A ai(Zrj#A (Ti(~k 
(C.7) 

~ #AO-~aj 

SO 

l,tAO'iO'j/K~<,fl ~_, ] i - k ]  ~d dSik#AO, aj/~;; ~ (C.8) 
k~A 
k ~ i , j  
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F r o m  (C.5) and  (C.8) we get 

# A ( T i f f j ~ f l  [ i - j l  ~d+f i  ~ l i - k l  ~a dSiklgAakaj/%k (C.9) 
k~A ~ 
k r  

Using  this inequal i ty ,  we can genera te  the adequa te  upper  expansion.  The  
r e s u m m a t i o n  of this expans ion  with the use of  

l i - k l  = a [ k - j l - ~ a < , b l i - j l - ~ d ,  for i C j  (C.10) 
k ~ i , j  

for a cons tan t  b > 0, gives us the b o u n d  

,UA~Tiaj <~fl(1--  fib) -1  [ i - - j [  ~a (C.11) 

i f O < f i < f i o f o r O < f l 0 < b  - I .  
This  ends the proof.  

Ana logous  m e t h o d  works  if an external  magne t ic  fields is included.  
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